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With the emergence of unmanned plane, autonomous vehicles, face recognition, and language processing, the artificial in-
telligence (AI) has remarkably revolutionized our lifestyle. Recent studies indicate that AI has astounding potential to perform
much better than human beings in some tasks, especially in the image recognition field. As the amount of image data in imaging
center of ophthalmology is increasing dramatically, analyzing and processing these data is in urgent need. AI has been tried to
apply to decipher medical data and has made extraordinary progress in intelligent diagnosis. In this paper, we presented the basic
workflow for building an AI model and systematically reviewed applications of AI in the diagnosis of eye diseases. Future work
should focus on setting up systematic AI platforms to diagnose general eye diseases based on multimodal data in the real world.

1. Introduction

As population aging has become a major demographic trend
around the world, patients suffering from eye diseases are
expected to increase steeply. Early detection and appropriate
treatment of eye diseases are of great significance to prevent
vision loss and promote living quality. Conventional di-
agnose methods are tremendously depend on physicians’
professional experience and knowledge, which lead to high
misdiagnosis rate and huge waste of medical data. Deep
integration of ophthalmology and artificial intelligence (AI)
has the potential to revolutionize current disease diagnose
pattern and generate a significant clinical impact.

Proposed in 1956 by Dartmouth scholar John McCarthy,
AI is a general term that “refers to hardware or software that
exhibits behavior which appears intelligent” [1]. -ough oc-
curred sixty years ago, it is until recently that the effectiveness
of AI has been highlighted because of the development of new
algorithms, specialized hardware, cloud-based services, and
big data.Machine learning (ML), occurred in 1980s, is a subset
of AI, and is defined as a set of methods that automatically
detect patterns in data and then incorporate this information
to predict future data under uncertain conditions. Deep

learning (DL), occurred in 2000s, is a burgeoning technology
of ML and has revolutionized the world of AI. -ese tech-
nologies power many aspects of modern society, such as
objects’ recognition in images, real-time languages’ trans-
lation, device manipulation via speech (such as Apple’s Siri,
Amazon Alexa, and Microsoft Cortana), and so on.

-e field of healthcare has been the forefront of the AI
application in recent years. Multiple studies have shown that
DL algorithms performed at a high level when applied to
breast histopathology analysis [2], skin cancer classification
[3], cardiovascular diseases’ risk prediction [4], and lung
cancer detection [5].-ese impressive research studies inspire
numerous studies to apply AI in ophthalmology. Advanced
AI algorithms together with multiple accessible data sets, such
as EyePACS [6], Messidor [6], and Kaggle’s data set [7], can
make breakthroughs on various ophthalmological issues.

-e rapid rise in AI technology requires physicians and
computer scientists to have a good mutual understanding of
not only the technology but also the medical practice to
enhance medical care in the near future. Miguel Caixinha
and Sandrina Nunes introduced conventional machine
learning (CML) techniques and reviewed applications of
CML for diagnosis and monitoring of multimodal ocular
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disease, without the mention about DL [8]. Litjens et al. [9]
detailly introduced various DL methods for different tasks
and provided an overview of studies per application area,
whereas the “retina” section majorly focused on the fundus
images only. Lee et al. [10] introduced the AI development in
ophthalmology generally. Rahimy [11] focused on DL ap-
plications in the ophthalmology field, without the mention
about CML. Louis J. Catania and Ernst Nicolitz systemically
reviewed AI and robotic applications in multiple categories
of vision and eye care but mentioned little about AI di-
agnosis of retinal diseases [12].

In this review, we systematically reviewed the application
of AI (both CML and DL) in diagnosing ocular diseases,
including the four leading cause of adult blindness diabetic
retinopathy (DR), glaucoma, age-related macular degenera-
tion (AMD), and cataract. We also introduced the existing AI
methods, the ophthalmic imaging modalities, detailed steps
for building AI models, and evaluation metrics in AI di-
agnosis. We hope we can provide both ophthalmologists and
computer scientists a meaningful and comprehensive sum-
mary on AI applications in ophthalmology and facilitate
promising AI projects in the ophthalmology field.

2. AI Algorithms

As wementioned above, ML is one subset of AI and includes
DL and CML (Figure 1(a)).-e defining characteristic of ML
algorithms is the quality of predictions improved with ex-
perience [13]. -e more data we provide (usually up to
a platform), the better the prediction model we can achieve.

Supervised learning and unsupervised learning are two
forms of ML. Supervised learning is to train a model from
already labeled training data, tunes the weightings of the
inputs to improve the accuracy of its predictions until they
are optimized, and then map test data sets as corresponding
outputs. It may expedite classification process and would be
useful for discriminating clinical outcomes. Unsupervised
learning is to train a model with unlabeled data (without
a human-labeled process), infers a function to describe
hidden structures that usually invisible to humans, and
could bring new discoveries, such as new encephalic region
relevant to Alzheimer’s disease [14] and new impact factors
of cardiovascular diseases beyond human’s recognition [4].
So far, methods adopted in most research studies are in
supervised form because the accuracy and efficacy are better
under supervised condition [15].

CML can get satisfactory outcome with small data sets, but
a cumbersome step to select specific visual features manually
prior to classification is indispensable [16]. -is selection can
result in a set of suboptimal features and overfitting (the
trained model is not generalized to other data except for the
training set), which limits CML algorithms’ application.

Existing CML algorithms used in AI diagnosis include
decision trees [17], random forests (RF) [18], support vector
machines (SVM) [19], Bayesian classifiers [20], k-nearest
neighbors [21], k-means [22], linear discriminant analysis
[23], and neural networks (NN) [24] (Table 1). Among them,
RF and SVM are the most commonly used CML technol-
ogies in the ophthalmology field [25] (Figures 1(b) and 1(c)).

DL, a burgeoning technology of ML, has the ability to
discover intricate structures in data sets without the need to
specify rules explicitly. A DL network is an NN with multiple
layers between the input and output layers (Figure 1(d)). It has
dramatically improved the state-of-the-art in image recogni-
tion [15].When applied to image classification, a key difference
between DL and CML algorithms is how they select and
process image features. Features of input data are automatically
learned in an unsupervised way by DL algorithms, avoiding
manual segmenting and depicting lesions’ areas [15, 26].
However, large data set is needed to train a DL algorithm.
Transfer learning is to retrain an algorithm, which has already
been pretrained on millions of general images before, on
a specific data set. -is method allows the training of a highly
accurate model with a relatively small training data set [27].

DL algorithms are known as “black boxes.” -e networks
generate comprehensive and discriminative features that are
much too high dimensional to be accessible for human in-
terpretation. Little is known about how they analyze pattern
and make a decision at the image level [7]. Heatmaps can
showwhich pixels play a role in the image-level predictions. In
the medical field, the visualization highlighted highly possible
abnormal regions in the input image for future review and
analysis, potentially aiding real-time clinical validation of
automated diagnoses at the point of care. Existing methods of
DL include long-term and short-term memory [15], deep
Boltzmann machines [28], deep kernel machines [29], deep
recurrent neural networks [30], and convolutional neural
networks (CNN) [15]. Among them, the most used DL
method in the medical image recognition field is CNN. -e
CNN consists of multiple convolutional layers that extract
features and transform input images into hierarchical feature
maps: from simple features, such as edges and lines, to
complicated features, such as shapes and colors. It also in-
cludes layers that can merge semantically similar features into
one to reduce the dimensionality of the extracted features, and
layers that can combine these features and output a final
probability value for the class. Existing CNN architectures
used in the medical image recognition field include AlexNet
[31], VGG [32], ResNet [33], and GoogleNet [34–37](Table 2).

3. Building AI Models

Various imaging modalities have been used in AI diagnosis,
such as radiology images (X-ray, CT, and MRI) [38], elec-
trophysiological signal records (electrocardiograph [39] and
electroencephalogram [40]), visible wavelength images (der-
moscopy images and biopsy images [3]), ultrasound images
[41], angiography images [42], and so on. We introduce the
ophthalmic imaging modalities in AI diagnosis in Table 3.

-e steps for building an AI model include pre-
processing image data, train, validate and test the model, and
evaluate the trained model’s performance.

3.1. Data Preprocessing. In order to increase AI prediction
efficiency, raw data need to be preprocessed.-e preprocessed
work includes the following [8, 43]: (1) noise reduction: noise
reduction needs to be performed in almost all relevant re-
search. Denoising can promote the quality of data set and
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Table 1: Introduction of existing CML techniques in the AI medical field.

Classifiers Principles

Decision trees (i) Tree-like structure
(ii) Solve classification and regression problems based on rules to binary split data

Random forests (i) Ensemble a multitude of decision trees for classification
(ii) -e ultimate prediction is made by majority voting

Support vector
machines

Build a hyperplane that separates the positive and negative examples as wide as possible to minimize
the separation error

Bayesian classifiers
(i) Based on the probability approach

(ii) Assign a new sample to the category with maximum posterior probability, depending on the given prior
probability, cost function, and category conditional density

k-nearest neighbors Search for k-nearest training instances and classify a new instance into the most frequent class of these k instances
k-means Partition n samples into k clusters in which each sample belongs to the cluster with the nearest mean
Linear discriminant
analysis (i) Create predictive functions that maximize the discrimination between previously established categories

Neural networks

(i) Consists of a collection of connected units, which can process signals
(ii) Connections between them can transmit a signal to another

(iii) Units are organized in layers
(iv) Signals travel from the input layer to the output layer

Machine learning
Deep learning

Traditional machine
learning

Expert system

Robotics
AI

Natural language processing
…

(a)

Tree 1 Tree n
Tree 2

Sample

Majority voting

Classification

…

(b)

SVM

(c)

Input
layer

Output
layer

Hidden layer

… … … …

…

…

(d)

Figure 1: Introduction of AI algorithms. (a)-e relationship among AI, ML, and DL. (b)-e workflow of a RF. (c)-e principle of an SVM.
(d) -e schematic diagram of a typical deep neural network.

Table 2: Concise introduction of CNN algorithms used in AI diagnosis.

Models Layers Top-5 error∗ (%) ILSVRC#

AlexNet (2012) 8 layers 15.3 2012
VGG (2014) 19 layers 7.3 2014
ResNet-152 (2015) 152 layers 3.57 2015
ResNet-101 101 layers 4.6 —
ResNet-50 50 layers 5.25 —
ResNet-34 34 layers 5.6 —
GoogleNet/inception v1 (2014) [34] 22 layers 6.7 2014
Inception v2 (2015) [35] 33 layers 4.8 —
Inception v3 (2015) [36] 47 layers 3.5 —
Inception v4 (2016) [37] 77 layers 3.08 —
∗-e fraction of test images for which the correct label is not among the five labels considered most probable by the algorithm.-e lower the top-5 error, the
better the classifier perform. #ImageNet large-scale visual recognition challenge.
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optimize learning process. (2) Data integration and normal-
ization: data collected from different sources should be in-
tegrated and adjusted to a common scale. (3) Feature selection
and extraction: the most relevant features are usually selected
and extracted to improve the learning process performance.

3.2. Training, Validation, and Test. To achieve a good per-
formance, the data set is randomly partitioned into two
independent subsets, one is for modeling and the other is for
testing. -e data in the former sets will be partitioned again
into training set and validation set in most cases. -e
training set is used to fit the parameters of a model. -e
validation set is used to estimate how well the model had
been trained and tune the parameters or to compare the
performances of the prediction algorithms achieved based
on the training set. -e test set is used to evaluate the final
performance of the trained model (Figure 2(a)).

Cross-validation methods have been widely used to esti-
mate and optimize algorithms [44]. -e most adopted cross-
validation is “K-fold cross-validation.” It is an effectivemethod
to avoid overfitting and underfitting. All data are equally
divided into K subsets, 1 for validation and K − 1 for training.
-is process will repeat K times, and average metrics are used
to evaluate the trained model (Figure 2(b)). Fivefold cross-
validation and 10-fold cross-validation are most commonly
used [44].

3.3. Evaluation. Receiver operating characteristic curve
(ROC) is a useful tool to depict algorithms’ performance. It is
created by plotting the detection probability for each algo-
rithm across a continuum of threshold. For each threshold,
the sensitivity and the false positive rate (1 − specificity) are
plotted against each other. -e area under receiver operating
characteristic curves (AUC) is the most used evaluation
metrics for quantitative assessment of a model in AI di-
agnosis.-e AUCs of effective models range from 0.5 to 1; the
higher the value of AUC, the better the performance of the
model [45]. Table 4 provides introduction of other metrics to
evaluate the performance of a model.

4. AI Application in Ophthalmology

Two hundred forty-three articles of AI application in di-
agnosing ophthalmological diseases have been published
(search by PubMed, Sep 20, 2018). Among them, the most

intensively studied are DR, glaucoma, AMD, and cataract
(Figure 3(a)). Figure 3(b) shows the breakdown of the papers
of these four diseases in year of publication.

4.1. Diabetic Retinopathy. Diabetes affects more than 415
million people worldwide, meaning 1 in every 11 adults is
affected [46]. DR, a chronic diabetic complication, is
a vasculopathy that affects one-third of diabetic patients and
can lead to irreversible blindness [47]. Automated tech-
niques for DR diagnosis have been explored to improve the
management of patients with DR and alleviate social burden.
AI was used to predict DR risk and DR progression among
diabetic patients to combat with this worldwide disease
[48, 49].

-e specific abnormalities such as macular edema
[50–53], exudates [53], cotton-wool [54], microaneurysms
[55, 56], and neovascularization on optic disk [57] can be
detected by CML. Based on these hallmarks, the early di-
agnose of DR in an automated fashion has been explored
[58]. Additionally, a system focused on timely and effectively
proliferative DR (PDR) detection has been developed to
ensure immediate attention and intervention [59, 60].

Gulshan et al. were the first to report the application of
DL for DR identification [6]. -ey used large fundus image
data sets to train a deep CNN (DCNN) in a supervised
manner. -ey showed that the method based on DL tech-
niques had very high sensitivity and specificity, and the AUC
came up to 0.99 for detecting referable DR [61]. In the past
two years, a number of DL models with impressive per-
formance have been developed for the automated detection
of DR [46, 62, 63]. Additionally, some studies applied DL to
automatically stage DR through fundus images [62–65],
making up the deficiency of Gulshan’s study that they only
detected referable DR but did not provide comparable data
on sight-threatening DR or other DR stages.

-e majority of aforementioned studies focused mainly
on the analysis of fundus photographs.-ere were some other
imaging modalities used to build models for DR. ElTanboly
et al. developed a DL-based computer-aided system to detect
DR through 52 optical coherence tomography (OCT) images,
achieving an AUC of 0.98 [66]. Despite the good outcomes in
the cross-validation process, the system needs to be further
validated in larger patient cohorts. A computer-aided di-
agnostic (CAD) system based on CML algorithms using
optical coherence tomography angiography (OCTA) images

Table 3: -e ophthalmic imaging modalities in AI diagnosis.

Imaging modalities Image features Applications

Fundus image Show amagnified and subtle view of the surface of the
retina Retinal diseases diagnose

Optical coherence
tomography

Show micrometer-resolution, cross-sectional images
of the retina Retinal diseases diagnose

Ocular ultrasound B-scan Show a rough cross-sectional view of the eye and the
orbit

Evaluate the condition of lens, vitreous,
retina, and tumor

Slit-lamp image Provides a stereoscopic magnified view of the anterior
segment in detail Anterior segment diseases diagnose

Visual field Show the size and shape of field-of-view To find disorders of the visual signal processing
system that includes the retina, optic nerve, and brain
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to automatically diagnose nonproliferative DR (NPDR) also
achieved high accuracy and AUC [67].

-e visualization of which pixels play an important
role in the image-level predictions has been applied into
DR diagnostic models [7, 46]. It represents intuitively the

learning procedure of the DL network and highlights im-
portant abnormal regions, assisting physicians’ better un-
derstanding of the DR predictions.-e visualization method
can enhance the applicability of intelligent diagnostic
models in real clinical practice.

Definition: a set of
examples used for

learning, which is to fit
the parameters of the 

model

All data

For modeling (2/3~4/5) For testing (1/5~1/3)

Test setTraining set Validation set

Definition: a set of examples
used to tune the parameters
of the model or to select an

optimal model Definition: A set of
examples used only to

assess the performation of
the modelSelection principle: random selection

Grouping method:
(1) Hold-out method
(2) K-fold cross-validation

(K = 5, 10......)
(3) Leave-one-out-cross-validation

(a)

K-fold cross-validation (K = 5)

Data for modeling

Round 1

Round 2

Round 3

Round 4

Round 5

Training set

Validation set

(b)

Figure 2: Data partitioningmethod during data processing. (a) A brief introduction of data partition. (b) An illustration of a specific process
of 5-fold cross-validation.
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4.2. Glaucoma. Glaucoma is the third largest sight-
threatening eye disease around the world and has critical
impact on global blindness [68]. Glaucoma patients suffered
from high intraocular pressure, damage of the optic nerve
head (ONH), retina nerve fiber layer (RNFL) defect, and
gradual vision loss. Automatically detecting features related
to glaucoma has great significance on its timely diagnosis.

-e optic cup-to-disc ratio (CDR) can be used to detect
glaucoma patients [69]. Based on automatically localization of
ONH and extraction of optic disc and optic cup from fundus
images [70], CDR can be calculated to assist glaucoma di-
agnose at an early stage by AI models [71–74]. Spectrum
domain OCT (SD-OCT) is another imaging modality to
evaluate CDR. After approximately locating the coarse disc
margin by a spatial correlation smoothness constraint, a SVM
model is trained to find the most likely patch on OCT images
to determine a reference plane that can calculate the CDR.-e
proposed algorithm can achieve high segmentation accuracy
and a low CDR evaluation error [75].

RNFL defect can serve as the earliest sign of glaucoma
[76]. Several researchers have explored diagnostic accuracy
of different methods using RNFL thickness parameters to

diagnose glaucoma [77–79]. However, high myopia patients
can also suffer from RNFL thickness reduction [80–83].
Recently, reports on how to distinguish the normal retina
from glaucoma in high myopia via OCT parameters and
optic disc morphology have been published. -is indicates
us to take account into the existence of other eye diseases in
future’s research about glaucoma’s intelligent diagnosis to
improve the accuracy of algorithms.

Visual field (VF) defect is a main alteration of visual
function during glaucoma progress. Recent studies showed
that changes in the central visual fieldmay already occurred in
the early stage of the disease, which is consistent with the
results of imaging studies [84]. -us, the early detection of
glaucomatous VF changes is significant to glaucoma’s suc-
cessful detection and management [85]. Applying ML
methods can improve the detection of preperimetric glau-
coma VFs from healthy VFs significantly [86]. Although
a standard automated VF test plays a key role in diagnosing
glaucoma, it consumes too much time and resources. What is
more, such a manual process performed by patients is sub-
jective and has shown strong variability in epidemiologic
studies [87].-e combination of all features mentioned above

Table 4: Introduction of metrics to evaluate the performance of a model.

Metrics Definitions
Accuracy Measure the proportion of samples that are correctly identified by a classifier among all samples

Sensitivity/recall rate -e number of actual positives divided by the number of all samples that have been identified as
positive by a gold standard

Specificity -e number of actual negatives divided by the number of all samples that have been identified as
negative by a gold standard

Precision/positive predictive value -e number of actual positives divided by the number of all positives identified by a classifier
Kappa value To examine the agreement between a model with the ground truth on the assignment of categories

Dice coefficient/F1 score Harmonic average of the precision and recall, where a F1 score reaches its best value at 1 (perfect
precision and recall) and worst at 0
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Figure 3: Publication of AI application in diagnosing ophthalmological diseases. (a) Publication statistics per ophthalmological diseases. (b)
Publication statistics per year (Jan 1, 2007 to Sep 20, 2018).
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is required for the accurate intelligent diagnosis, for any of the
single symptom is not the guarantee sign of glaucoma [83, 88].
-is kind of research shows great performance in classifying
glaucoma and healthy eyes. Clinicians may reference these
prediction results and make better decisions.

Studies using DLmethods to diagnose glaucoma are few.
So far, fundus images [73, 89, 90], VFs [91], and wide-field
OCT scans [92] have all been used to construct DL-based
glaucomatous diagnostic models. Preperimetric open-angle
glaucoma (OAG) eyes can be detected through DL with
better performance than those got from CML techniques
[91]. Holistic and local features of optic disc on fundus
images have been used together to mitigate the influence of
misalignment when located optic disc for glaucoma di-
agnosis [89].-e AUCwas 0.8384, which is quite close to the
manual detection results. Li et al. demonstrated that DL can
be applied to identify referable glaucomatous optic neu-
ropathy with high sensitivity and specificity [90].

4.3. Age-RelatedMacular Degeneration. AMD is the leading
cause of irreversible blindness among old people in the
developed world [93]. -e goal of using ML algorithms is to
automatically identify AMD-related lesions to improve
AMD diagnosis and treatment. Detection of drusen [93, 94],
fluid [94, 95], reticular pseudodrusen [96], and geographic
atrophy [97] from fundus images and SD-OCT using ML
[96] has been studied. -e accuracy is usually over 80%
[93, 96–98], and the agreement between the models and
retina specialists can reach 90%.

Drusen regression, an anatomic endpoint of in-
termediate AMD and the onset of advanced AMD, can be
predicted through the specifically designed, fully automated,
ML-based classifier. Bogunovic et al. develop a data-driven
interpretable predictive model to predict the progression
risk in intermediate AMD [94]. Automated image analysis
steps were applied to identify and characterize individual
drusen at baseline, and their development was monitored at
every follow-up visit. Using such characterization and
analysis, they developed an ML method based on survival
analysis to estimate a risk score and predict the incoming
regression of individual drusen. Above all, these automated
detections of the retinal lesions combined with in-
terpretation of disease activity are feasible and have the
potential to become a powerful tool in clinical practice [95].

Using ML to predict anti-vascular endothelial growth
factor (anti-VEGF) injection requirements in eye diseases
such as neovascular AMD and PDR can alleviate patients’
economic burden and facilitate resource management.
Bogunovic et al. fed corresponding OCT images of patients
with low or high anti-VEGF injection requirements into RF
to obtain a predictive model. A solid AUC of 70% to 80%was
achieved for treatment requirement prediction [99]. Prahs
et al. trained a DCNN neural network by OCT images to
facilitate decision-making regarding anti-VEGF injection
[100], and the outcomes were better than that of using CML
[99]. -ese studies are an important step toward image-
guided prediction of treatment intervals in the management
of neovascular AMD or PDR.

Multiple CML techniques have been applied for auto-
mated diagnosis and grading of AMD [101, 102]. But the
most impressive work was based on DL techniques over the
past 2 years [103–105]. Treder et al. establish a model to
automatically detect exudative AMD from SD-OCT [105]. In
research studies based on fundus images, images with AMD
were assigned into 4 classes of classification (no evidence of
AMD, early-stage AMD, intermediate-stage AMD, and
advanced AMD) [104], or 2-class classification (no or early-
stage AMD and intermediate or advanced stage AMD) [103].
-e diagnostic accuracy is better in the 2-class classification
in current studies. -e DCNN appears to perform
a screening function in these experiments, and the perfor-
mance is comparable with physicians. DL algorithms have
also been used to automatically detect abnormalities such as
exudates [106], macular edema [51, 52], drusen, and cho-
roidal neovascularization [27].

4.4. Cataract. Cataract is a disease with cloudy lens and has
botheredmillions of old people. Early detection and treatment
can bring the light to cataract patients and improve their living
quality.ML algorithms such as RF and SVMhave been applied
to diagnose and grading cataract from fundus images, ul-
trasounds images, and visible wavelength eye images [107–
109]. -e risk prediction model for posterior capsule opaci-
fication after phacoemulsification has also been built [110].

Researchers can now use DL models to diagnose senile
cataract [111], but a more impressive work is about the
pediatric cataract. It is one of the primary causes of child-
hood blindness [112]. Long et al. constructed a CNN-based
computer-aided diagnosis (CAD) framework to classify and
grade pediatric cataract. What is more, a cloud-based
platform integrated the AI agent for multihospital collab-
oration has been established.-ey even developed a software
to realize clinical application for ophthalmologists and pa-
tients and have applied it in Zhong Shan Ophthalmic Center
[113, 114]. -ese proposed methods are serviceable for
improving clinical workflow of cataract’s diagnosis in the
background of large-population screening and mainly shed
a light on other ocular images.

In addition to DR, glaucoma, AMD, and cataract, AI has
also been used to diagnose other eye diseases. AI algorithms
can be used to detect keratoconus or identify eyes with
preclinical signs of keratoconus using data from a Scheimp-
flug camera [115, 116], to evaluate corneal power after myopic
corneal refractive surgery [117], to make surgical plans for
horizontal strabismus [118], and to detect pigment epithelial
detachment in polypoidal choroidal vasculopathy [119].

Previous studies have summarized articles about the
application of CML techniques in eye diseases [8]. In this
review, we summarized studies on glaucoma, DR, AMD, and
cataract using DL techniques in Table 5.

5. Future of AI Application in Clinic

In recent years, AI techniques have shown to be an effective
diagnostic tool to identify various diseases in healthcare. Ap-
plications of AI can make great contributions to provide
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support to patients in remote areas by sharing expert knowledge
and limited resources. While the accuracy of the models is
incredible promising, we need to remain prudent and sober
when considering how to deploy these models to the real world.

Most studies regarding intelligent diagnosis of eye dis-
eases focused on binary classification problems, whereas in
clinical setting, visiting patients suffer from multicategorical
retinal diseases. For instance, a model trained to detect AMD
will fail to consider a patient with glaucoma as diseased
because the model only has the ability to discriminate AMD
from non-AMD. Choi and his colleagues carried out a work
applying DL to automatically detect multiple different ret-
inal diseases with fundus photographs. When only normal
and DR fundus images were involved in the proposed DL
model, the classification accuracy was 87.4%. However, the
accuracy fell to 30.5% when all 10 categories were included
[120]. It indicated that the model’s accuracy declined while
the number of diseases increased. To further enhance the
applicability of AI in clinic practice, we should make more
efforts to build intelligent systems that can detect different
retinal diseases with high accuracy.

Additionally, a single abnormality detected from one
imaging technique cannot always guarantee the correct
diagnosis of a specific retinal disease (e.g., DR or glaucoma)
in clinical practice. Multimodal clinical images, such as
optical coherence tomography angiography, visual field, and
fundus images, should be integrated together to build
a generalized AI system for more reliable AI diagnosis.

However, the need of huge amount of data remains the
most fundamental problem. Although various data sets have
been available, they only incorporate a small part of diseases
human suffered from. Images with severe diseases or rare
diseases are particularly insufficient. -e population charac-
teristics, the existence of various systematic diseases, and the
diverse disease’ phenotypes should be considered when select
input data. Larger data sets from larger patient cohorts under
different settings and conditions, such as diverse ethnics and
environments, are also needed in some automated diagnosis
systems with impressive outcomes for further validation.

-e high dependency on the data quality should be
considered. Different imaging devices, various imaging
protocols, and intrinsic noise of data can affect the data’s
quality, which may have huge influences on models’ per-
formance [38]. In addition to data preprocessing, universal
useful methods to analyze images with different qualities
need to be developed urgently.

Although the DL-based methods show excellent results
most of the time, their “black box” nature makes it difficult
to interpret how algorithms make decisions. In this era of
“evidence-based medicine,” it is difficult for clinicians and
patients to trust a mysterious machine that cannot provide
explanations of why the patient is diagnosed with a certain
disease. What is more, the techniques that make the AI
models more transparent can also detect potential bias in
the training data and ensure that the algorithms performwell
[121]. Heatmaps and the occlusion test are two of these kinds
of techniques that can highlight highly possible abnormal
regions for predictions and make models interpretable to
some extent [7, 27]. More methods to interpret AI models

should be developed and applied in AI diagnosis. Moreover,
the standards to systematically assess these methods should
also be considered and developed.

Above all, by building interpretable systematic AI plat-
forms using sufficient high-quality and multimodal data and
advanced techniques, we can enhance the applicability of AI
in clinical circumstances. In some day, we might make it
possible to adopt intelligent systems in certain process of
clinical work. -ough ethical, regulatory, and legal issues
arise, AI will contribute remarkably to revolutionize current
disease diagnostic pattern and generate a significant clinical
impact in the near future.
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